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Introduction

During this 2 years project, we have made great progress in developing the methods required
to study bone remodeling as a function of time. The following paragraphs summarizes our
accomplishments.

1 CT Acquisition Protocols

During the two year duration of this project, we have performed a number of experiments to

determine the best protocol for serial imaging of the calcaneus for quantitative applications. The

experiments consisted of the following:

Rob Whalen constructed a phantom that models the calcaneus and its surrounding soft tissue.

We scanned the phantom using two different energies (80kVp, 120kVp) and 3 different intensities

(80mA, 200mA, 400mA) in both spiral and conventional modes. For each of the 12 combinations

of parameters, we obtained 30 scans of the phantom at the same location. We determined the noise

level for each combination by computing the standard deviation of the voxels within the center of

the calcaneus model across the corresponding 30 scans. The results of these experiments were:

(a) We have selected Spiral CT over conventional CT for the following reasons:

(1) Spiral CT significandy reduces the inter-slice registration error that usually occurs in
Axial CT and therefore results in more accurate surface and volume reconstruction.

(2) For thin-slice scanning (as we must do in this application), the patient dose in spiral

CT is lower compared to conventional for the same longitudinal coverage and

technique (kV, mA) factors.

(3) the availability of overlapping slices leads to reduced partial volume errors which in

term improves the accuracy of the surface detection algorithm, crucial for serial

registration capability.

(b) We need to scan at 120 kV and 400 mA in order to achieve noise levels low enough to

achieve the required precision.

2 Image Registration

We have developed, implemented, and tested a surface registration system by modifying and

extending the methods previously developed for multi-modality applications. As the existing

system was not optimized for high resolution quantitative computed tomography (QCT), we

developed new methodologies to improve the registration accuracy and computation speed:

(a) Surface detection algorithm and representation:

We have developed a robust and accurate 3-D surface detection algorithm. Our

implementation of the algorithm results in a set of surface points and corresponding
normals which are stored in a new efficient data structure. The maximum error of our 3-D

detection algorithm was 0.2 voxel compared to 0.5 voxel for a conventional detection

algorithm. The new surface representation and corresponding data structure improved

registration speed by at least 5 times compared to more traditional triangular mesh-

generating methods.



(b)

We

Interpolation function:

have developed a methodology to select the optimal interpolation function based on the

noise structure, voxel size and image content. This significantly reduces the computation

time and interpolation error incurred in resarnpling the data volume.

(c) Gold standard:

We initially tested our registration method using an external reference system and related

software as a "gold standard." During the course of this work, we discovered that our
new methods had residual errors comparable to errors expected from the gold standard

registration system. So we developed a new technique for registration using frames that

resulted in much higher accuracy. This method, which can be used for any stereotaxic
registration application, allows better quantification of the accuracy of frameless

registration systems such as ours. As before, it requires the attachment of an external

reference system that must be kept in place during and between scanning. However,

existing methods that are widely deployed in neurosurgical applications require accurately

and precisely constructed frames. In contrast, our method assumes only linear structures
in the frame and utilizes all 3D information.

We tested our new "gold standard" using a frame constructed by Robert Whalen at NASA.

Registration between pairs of successive scans had a maximum error of 0.1 voxel and an

average error of 0.07 voxel [1][2].

We implemented the registration system, including items (a-b) above, together with a user

interface on a general purpose workstation. This system requires minimal user intervention,

registers CT volumes containing the whole calcaneus (time required to register two 512 x 512 x 80

slice volumes is approx. 2 hr.. on a SparcStation 20) and is now available for routine use in our
labs. We scanned 3 calcanei (attached to the Whalen-stereotaxic frame) in different orientations and

registered each pair (total of 5 pairs) using the new registration system. Based on the newly

developed gold standard, the registration had an average error of 0.7 voxel (0.18mm) and a
maximum error of 1.4 voxel (0.36mm). This result clearly showed that the accuracy of the new

system is suitable for high resolution QCT [3].

3 CT attenuation accuracy

Beam hardening is caused by filtering of the polychromatic x-ray spectrum by the objects in the

scan field. This effect, if not corrected, can cause severe artifacts in CT images and result in

inaccurate measures of attenuation. Because we expect bone density in our patient population to

change over time, beam filtration will change as well. Therefore, the errors caused by beam

filtration will also change, making it difficult to compare bone density from measurements made at

different times. We studied the effect that bone density changes have on these errors by scanning a

specially constructed phantom consisting of a water-filled cylinder containing in its center a thin
aluminum shell f'dled with solutions of various concentrations of potassium phosphate to simulate
different bone densities. We used four different concentrations and 3 different correction

techniques with the following results:

(a) Scans using only the standard water correction: Water correction is standard on all
CT scanners. However, using it alone resulted in errors caused by beam hardening

that are much greater than our accuracy requirements demand.



(b) Scans using the iterative bone option (IBO) correction method: This method is a

proprietary algorithm available on General Electric CT scanners that corrects for the

spectral hardening caused by the skull in CT scans of the head. The errors caused by

beam hardening vary with bone density less than without IBO; however, the errors

are still too high on the average.

(c) Scans using a water bolus (with and without IBO): The water bolus pre-hardens the

beam before it reaches the phantom to reduce beam hardening error. However, the

corresponding increase in noise level reduced the precision of our measurements

below our requirements.

4. Publications

Reprints or pre-prints of references below are included in the Appendix.
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Abstract

This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be com-
prised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms.

The algorithm utilizes the full 3D information in the frame as well as a least square weighting scheme to achieve

highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. Experimental

results show that the proposed algorithm is comparable to the best existing technique with knowledge of the
exact frame model. In situations where there is a discrepancy of more than 0.1cm (0.2% of the frame dimension)
between the frame and the mathematical model, the proposed technique produces registrations that are 2 times

more accurate than that from existing techniques. We also outline a routine for estimating the registration error.
This allows us to take the uncertainty of the frame registration into consideration during an accuracy evaluation of

a frameless registration system. In one test of using the proposed frame registration system as the gold standard
to assess the accuracy of a surface-based (frame-less) registration system, error estimates changed by 10% when

the estimates of the error in the frame-based system were accounted for.

1 Introduction

Recent advances in medical imaging have led to an increased interest in image registration. Its usage includes

stereotaxic surgery, clinical diagnosis, therapy planning, image guided surgery, and many others [1] [2] [3]. Refer

to [4] [5] for extensive reviews on registration algorithms.

This work is motivated by our interest in the non-invasive determination of changes in bone mass. Non-invasive

measurement of changes in bone apparent density require imaging the same skeletal site at different times and

registering the serial images. To this end, we have developed a semi-automatic, 3D surface-based registration

technique that does not require the use of an external frame or fiducial markers, we can make non-invasive
measurements of changes in bone apparent density. Mis-registration can introduce errors and also limit the

size of the measured volume (the effect of mis-registration errors increases as the size of the measured volume

decreases). For these reasons, precise evaluation of the registration algorithm accuracy is crucial [6].

The availability of a good method for quantifying registration accuracy (Gold Standard) not only allows researchers

to compare their algorithms, but most importantly, it enables system designers to put registration algorithms

into practical use with confidence. Current quantification methods can be divided into three major groups: use of

1) computer generated data sets; 2) anatomical landmarks and 3) fiducial markers or frame. In the first method

[7] [8], a second image set is generated from an acquired image set by rotating and translating it through a
known amount. In this case, the true transformation is known. The drawbacks of this technique are that the

second image set has (1) noise correlated with the noise in the first set, and (2) lower spatial resolution than
the first due to the interpolation required to generate it. These effects result in conditions that would not be



encounteredin actual registration of separately acquired scans. The second method utilizes internal landmarks

to evaluate registration algorithms [9] [10]. Registration error is taken as the root-mean-square (rms) distance

between corresponding landmarks and is assumed uniform throughout the registered volume. The small number
of usable landmarks and the errors associated with landmark detection are the main deficiencies of this method.

The last and most popular method [2] [11] [12] [13] [14] [15] [16] [17], assumes that the transformation of externally
applied frame/markers is the true transformation. As opposed to anatomical landmarks, the frame/markers are

usually constructed in a manner to enable accurate detection.

The gold standard transformation in categories (2) and (3) by itself has registration error associated with it,
and that error is commonly ignored. If the error in the gold standard is comparable to that of the algorithm
under examination, then the evaluation result is useless. This problem is crucial at locations far away from

landmarks/markers/frame as the registration error of the gold standard is likely to change as we move away
from these structures (usually the landmarks/markers/frame are not in the VOI). In [11] [12], the authors have

tried to address this problem by inserting rods into the VOI (a cadaver brain) and using the distance between

corresponding rods as a measure of registration accuracy. This method has good results; however the detection
error of the rods are ignored and the quantification is precise only in the region near the rods (not the whole

VOI). Also this method is invasive and can only be performed on cadavers. In general, current quantification

techniques have two shortcomings: 1) the registration error of the gold standard is ignored, 2) the evaluation is

accurate only in the region near the landmarks/markers/frame which does not contain the whole VOI.

The current techniques for frame registration are mainly designed for the field of stereotaxic surgery [13] [14] [15]

[18] [19]. In all these techniques, the authors have assumed that the frame is comprised of parallel N structured
rods and that an accurate mathematical model of the frame construction is available. Three main shortcomings

of these techniques are: 1) registration accuracy depends on the accuracy of the frame construction, 2) they do
not utilize the full 3D information in the frame, and 3) they are not generic; ie. they are not applicable to other
non-standard frames.

This paper presents a new algorithm for frame registration. Our algorithm only requires that the frame be
comprised of a set of straight rods (N structure or exact model are not required), thereby making the algorithm

applicable to all type of frames. The algorithm utilizes the full 3D information in the frame and a least square

weighting scheme to achieve highly accurate registration. We also present a routine for estimating the registration
error.

Section 2 contains an outline of the proposed registration algorithm and the least square weighting scheme.

In addition, we define the error measure for registration algorithms comparison and also outline a method for

estimating the registration error of our proposed algorithm. Section 3 describes the methods we used to validate
our technique. Section 4 contains the report of the the experimental results from Section 3. Finally, the conclusions

of our study are presented in Section 5.

2 Registration Algorithm

2.1 Problem Definition

We are given two 3D image sets of a frame. The imaging modality for these images can be the same (acquired

at different times) or different (e.g. CT and MR). Our goal is to find a transformation (based on the frame) that
will relate the coordinate systems of these image sets. Before we are able to perform any registration, we need to

extract the line parameters representing the rods from each image set. There are numerous ways of estimating

the line parameters; the technique we used is outlined in Section 3.1.3.

Given the equation of a line L:

L: r =km+a



where m and a are the gradient and intercept. The equation of a transformed line can be written as

L_: r =kRm+Ra+t

where the transformation is comprised of a rotation tt followed by a translation t. Note that any rigid body

transformation can be expressed in terms of R and t. Next, we represent a set of I lines by (M, A, tim, fla) by

M = (ml,m2,..',ml)

A = (ax,a2,"',¢)

fl,. = (r.._x,r_m2,,..,_z)

fla = (r_ax,_,2,...,r,,t)

where ml and ai are the gradient and intercept of the ith line. The estimation error of mi and a_ axe captured

in _mi and _i respectively with

_mi = E{(mi- E(m_))(m_ - E(m_)) T}
r_., = E((ai - E(_))(_ - E(ai)) T)

We further assume that the estimation errors for each line are unbiased and independent of those for all other

lines. So mathematically, the problem can be restated as:

• given two sets of lines (M1,Al,fl,n,l,fla,1) and (M2,A2,flm,2,fta,2)

• find a transformation (R*,t*) that optimally matches lines in the first set to their corresponding lines in
the second set.

2.2 Determining the Rotation and Translation

We divide the transformation determination problem into two subproblems:

• Determine the rotation It* using the following criterion:

t

R* ----argmRm Z II mij --Rm,,2 1122
i=l

subject to ItTR = I (1)

where mid is the ith column of Mj.

• Determine then the translation under the following scenario:
We perform a transformation of (R*, t) on (M2, A2, N,n,2, f/a,2) to obtain (M'2, A*2(t), f_m,2, f/_a,2) • For

each line Li in (M1, At, tim,x, f/aj) and its corresponding pair L_(t) from (M*2, A*2(t), [2_,n,2, f/_a,2), we

define a plane lr_ which passes through the centroid of the VOI and is perpendicular to Li, as shown in

Figure 1. We define Pi as the intersection point of Li and the plane lri. Similarly, p*i(t) is the intersection

point of L_(t) and Iri. The optimal translation t* is determined by the following criterion:

!

t* = argmtin E II Pi - p'i(t) I1_"
i=1

(2)
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Figure 1: The optimizing criterion for translation

The optimizing rotation for Equation (1) is

R* ---_ UV T (3)

where U and V are the unitary matrices in the singular value decomposition of MIM2 T which is given by

UTM1MTV : diag(._l, _2, A3) = A

Refer to Appendix A for a detailed derivation. In Appendix B, we show that Equation (2) is equivalent to a

quadratic optimization problem and can be solved by using the calculus of variation. The optimizing translation

is

t 1 T , m'inT -- n.----.-._tn ,m t ) 1 _=_1(ni.m,t n, -- ki).• (4)t*= {E(I + (ni.m,i)2nin, n/. •
i=l

2.3 Weighting Scheme for R ° and t*

In Section 2.2, we have formulated the optimization criteria based on the assumption that the line estimation

error variances are equal. In cases where rim, and i2a are available and the error variances are not constant, we

could improve the accuracy of the frame registration by using a weighting scheme. In this method, we weight the

registration error of each line by a weight chosen inversely proportional to their estimation error variances. We

reformulate Equation (1) and (2) as

i

R" = argml_n Ewm IIm,,t - Rm/,2 [[22 subject to RTR = I (5)
i=l

and

!

t* = argm_n E wt, IIPi - p'i(t) [[2_ (6)
i=1



with

1
= E(ll m_,, -_m_,21122)

1
- E(II pi- p'i(T)II 2)

lllt i

where (9_, 9") is the true transformation. Appendix C shows the procedure for calculating wm and wti. Equation

(5) and (6) can be solved using the procedures in Appendix A and B.

2.4 Error Measure

Before we could perform any comparison between registration systems, we need to define the error measure that
is to be used in the comparison. Let the true transformation be (_,_). For any other transformation (R,t), the

registration error at a point p is

6 = (_ - R)p + (_Y- t).

By using the triangle inequality, we have

E(II6 115) _< E(IIRp I1_)+ E(II_ 115)
< ECl_mo,I) IIP 112+E(II _ 112)

where 1_ = _ - R, [, = 9" - t and I_ma,Iis the largest absolute eigenvalue of 1_. E(IA._ffil) and E(II [, 112)are

good indicators for the rotational and translational registration accuracy respectively. Thus we use (E(]),m_ffi]),

E(II t 115))as an error measure for comparing registration algorithms. We denote E(lAm_l) by eR and E(II t 112)
by et. Note that the translational error in a registration is constant throughout the V0I and its expected value

is equal to et. Whereas, the rotational error increases linearly with the distance from the center of rotation and
a multiplicative constant of eR. Thus the overall accuracy of a registration algorithm depends on the value of

(era et) and the size of the VOI. We refer (eR, et) as the frame registration error with rotational registration error
eR and translational registration error et-

In actual situations, we do not have the luxury of performing many runs of registration to obtain an estimate

for frame registration error. However, it will be extremely useful for us to know the degree of uncertainty in the

frame registration. Due to the nice properties of E(ftT_t) and E(II t Ih2),we outline their derivations in Appendix

D. We then approximate en with the largest eigenvalue of E(I_rR) _t and et with E([[ _ Jig)½.

3 Experimental Design

3.1 Registration Accuracy Comparison

In this section, we compare our technique with two other commonly used techniques. We denote the first technique

as the Parallel-N technique [13] and the second as the Point-Based technique [15] [18] [19]. The Parallel-N
technique uses 2 detected N-structures as the coordinate system and the Point-Based technique matches each 2D

slice separately to an N-bar model.

3.1.1 Simulation

Simulated CT data of a frame, shown in Figure 2(a), were obtained by a simulation program [20]. All CT images

(512x512 pixels) were simulated with the following parameters: Axial, 80kV, 100mA, 0.3x0.3x1.0 cm 3 voxels.

Figure 2(b) shows a slice from the simulated CT volume. The variance of the poisson noise was experimentally

adjusted to be similar to that in an actual scan acquired and reconstructed using the identical parameters.
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Figure 2: (a) The frame model used in the simulation. (b) A slice of the CT scans.

3.1.2 D_a

Sixty contiguous 1.0cm slices were generated from z = -5cm to z = 55cm with the frame in the orientation

shown in Figure 2(a). We denoted these sixty slices as a CT volume of the frame. We simulated 50 CT volumes

separately such that the noise in each CT volume was independent of those in other CT volumes. We then

transformed the model of the frame by a rotation R=(5 ° about x, 5 ° about y and 15 ° about z) and a translation

t=(-1.Scm, 1.5cm, -1.5cm). Another set of 50 CT volumes were obtained with the frame in the new orientation.

3.1.3 Methods

For every slice,we used an edge detectionalgorithm todetectthe circumferenceofthe rod [12].We then performed

a leastsquare fitof the circumferenceto an ellipse.The centerof the ellipsewas taken to be the centerof the rod.

Using thismethod, we estimated the centerofthe rod inevery slice.The parameters of the linerepresentingthe

rod, (m, a,Era,Ea) were estimated using the procedures describedin Appendices E and F. For each registration

technique,we performed 50 registrationsand compared the resultsobtained with the known truetransformation.

The exact frame model was used in both the Point-Based and Parailel-Ntechniques.

For every registration,we used the proceduresin Appendix D to obtainE(RTI_t) and E(H t H).We then estimated

the frame registrationerror(_R,ct)and compared itwith the true value obtained from the previous experiment.

To study the sensitivityof the Parallel-Nand the proposed technique to model inaccuracies(the frame and its

model do not match), we repeated the experiment with an inaccurateframe. We formed an inaccurateframe by

perturbing the end pointsof allthe rods in the frame with a gaussian random variable(with variance (rn).A

50 CT volume set was obtained using thisframe in the orientationshown in Figure 2(a). A the second set was

obtained with the inaccurateframe inthe second orientation,as in Section3.1.2.We performed 50 registrations

usingeach registrationtechniqueand compared the resultswith the true transformation.We performed 50 monte

carlosimulationsfor each qn ranging from (0.0001cm to 0.2cm).



Method _R _t(cm)

Point-Based 0.0074 + 0.000024 0.7167 4-0.00037

Parallel-N 0.0006 4-0.000004 0.0074 4-0.00007

Proposed 0.0009 ± 0.000006 0.0053 ± 0.00004

Table 1:This tableshows the expected registrationerrors(rotationIAmazI and translationU _ H) in the various

techniques.(voxelsize:0.3x0.3x1.0cmS).

3.2 Evaluation of the Surface-Based Registration Algorithm

We used the proposed frame registration system to evaluate the accuracy of the surface-based registration system

that we have customized from [11] for quantifying bone loss over time. We secured excised human calcanei within
a custom made fiducial frame shown in Figure 3. We scanned the frame/calcaneus in different orientations.

Scanning was done at a resolution of 0.25x0.25x0.5mm 3. The rods in the image volume were extracted by

the procedure described in Section 3.1.3. We determined the accuracy of the surface registration algorithm

by 1) obtaining the frame transformation using our proposed algorithm, 2) obtaining a transformation for the

calcaneus using surface-based algorithm, 3) transforming all calcanens voxels using both the frame's and the
surface's transformation, 4) calculating the distance (error) between corresponding voxels in the two transformed

calcaneus images. Note that none of the current frame registration techniques is applicable to this custom-made
frame. To examine the effects of noise and contrast, we repeated the whole experiment with the frame/calcanens

immersed in a water bath.
1

Figure 3: An excised human calcaneus tightly secured in the custom made frame.



4 Results

4.1 Registration Accuracy Comparison

For each registration, we obtain (Iq.,t) which is used for calculating ([[Amazll, H t ID" The mean of (llAmazll, II _ II)

from the 50 registration runs is used as an estimate for (eR, et). The results are tabulated in Table 1. As the

Point-Based method only utilizes points information on a single slice to perform the registration, its performance

is not as good when compared to methods that utilize the entire line. The results show that the performance

of the proposed method is comparable to that of Parallel-N method. The proposed method produces a better
translational registration while the Parallel-N method is more accurate in rotational registration. The amount

of information contained in the true frame model and six rods (four vertical, two slanted) enables the Parallel-N

method to produce a better rotational registration than the proposed method whose registration is solely based

on the information from eight rods (four vertical, four slanted). However for translational registration, the z-axis

translation (refer to Figure 2(a)) can only be determined by slanted rods. In the proposed method, the use of
two additional slanted rods provides substantial amount of information on the z-axis translation which leads to a

more accurate translational registration in the z-axis. The significant gain in the z-axis translational registration

accuracy results in a better overall translational registration for the proposed method. For the simulation, the
mean absolute translational registration error in (x-axis, y-axis, z-axis) for the proposed and the ParaUel-N

methods are (0.0026, 0.0021,0.0032) and (0.0020, 0.0026, 0.0060) respectively. Note that the proposed method is
two times more accurate than the Parallel-N method in the z-axis translational registration.

The estimated values of eR and et are 0.00094 + 0.000037 and 0.0061 + 0.00013 respectively. A comparison of

these figures with Table 1 shows that there is bias of 0.00004 in the estimate of eR and 0.0008 in the estimate
of et. Due to the fact that E(X 2) > E(IXD 2 for any random variable X, the approximation done in Section 2.4

introduces a positive bias into the estimates. As we are going to use these estimates to form an upper bound for

the registration error of the proposed algorithm, the biases are not significance since they are small (less than

15% of the true value) and positive.

Figure 4 shows the performance of the ParaUel-N and the proposed techniques on an inaccurate frame. The

accuracy of the Parallel-N technique is degraded with- the increase in frame-model discrepancies. Whereas the

performance of the proposed technique, which is not based on any frame model, is not affected by the frame-model
discrepancies. If the mis-match between the frame and the model is more than 0.01cm, the registration error for

the Parallel-N technique increases exponentially. The performance of the proposed technique surpass that of the

Parallel-N technique, in both rotational and translational aspect, when the frame-model discrepancies are more

than 0.05cm (0.1% of the frame dimension). This amount of discrepancies are common in practice which may

due to the frame being dropped or damaged or mal-machined.

4.2 Evaluation of the Surface-Based Registration Algorithm

Figure 5(a) shows an error plot for a slice of the calcaneus (in air) using the frame-based transformation as truth.

The availability of the estimated (1_, t) allows us to account for the frame registration error in our evaluation.

By the triangle inequality, we have

registration error ]true < registration error Ilrarne + frame registration error.

Thus by adding the estimated frame registration error to the error in Figure 5(a), we have formed an upper

bound for the true registration error of the surface-based algorithm. Figure 5(b) shows the registration error

(with respect to the true transformation) of the surface algorithm for that particular slice.

By repeating the same analysis for the rest of the ealcaneus, we have obtained an worst ease error map for

the surface-based technique on the whole calcaneus. Table 2 shows a performance summary for our surface-

based algorithm. Note that there is a significant increase in registration error (10%) when the frame registration

uncertainty is taken into consideration.
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Figure 4: This figure shows the effects of frame model discrepancies on the performance of the Parailel-N and the
proposed method. (a) The translation error E(lltll ) plotted against the perturbation an (the standard deviation of

the gaussian perturbation). (b) The rotation error E(]Amaz [) plotted against the perturbation a.. The horizontal

lines are 1 standard deviation from the mean. (voxel size: 0.3x0.3xl.0 cm s)

Error (mm) Error (mm)
relative to Frame true

Min Ave Max Min Ave Max

Calcaneusin Air 0.002 0.18 0.36 0.015 0.20 0.39
Calcaneus in Water 0.040 0.20 0.40 0.055 0.22 0.43

Table 2: This table shows the evaluation results for the surface-based algorithm. The first set of results is obtained

under the assumption that the frame registration represents the true transformation. The second set of results

accounts for the uncertainty in the frame registration
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Figure 5: This figure shows the contour plot of the registration error on a slice (through the centroid of the

VOI) from the image volume. (a) shows the registration error with the frame's registration assumed to be the
true registration. (b) shows the registration error when the uncertainty of the frame registration is taken into
consideration

5 Conclusion

We have described an accurate frame registration algorithm. The proposed algorithm assumes only linear struc-

tures (rods) in the frame and also utilizes all the 3D information to perform the registration. The proposed
method is not restricted to the head frame (which is comprised of N-structures). So to perform registration sys-

tem accuracy evaluations on a VOI other than the head, one only needs to designate some linear structures as the

frame. A comparison with various current frame registration algorithms shows that the proposed method is more

robust and more accurate. In addition, we have derived an estimator for the frame registration error. We have

shown that it is necessary to incorporate frame registration errors into the evaluation of frame-less registration

system and that doing so gives an upper bound on the expected error of the frame-less system.
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A Determining the Rotation R*

Given two matrices M1 and M2, we would like to find a rotation matrix R* such that

l

R" = argm_n y_ ]] m,,l - Rm,,2 [[_
i=1

The above optimizing criterion can be written as

R* = arg m_n IIMI - RM2 ll_ subjectto RTR = I

where H.[[Fisthe Frobenius norm [21].SinceR isorthogonal,then

subjectto RTR = I

(z)

I[ MI - tLM2 II_.= trace(MTM1) + trace(MWM2) - 2trace(RTM1MT)

then (7) is equivalent to the problem of maximizing trace(RTM1M_). The maximizing R can be found by

calculating the singular value decomposition (SVD) of M1M_. If

UTM1MTV = diag(A1, A2, A3) = A (8)

is the SVD decomposition, then

trace(R r Mi M_ ) = trace(RTUAV T)

= trace(vTsTuA)

= Z11A1+ Z22A2 + Z33A3

where Z = VTRTU and z 0 is the (i,j) element of Z. As U and V are unitary, the upper-bound is obtained by

setting Z = I. Thus R* = UV T [21].

B Determining the Translation t*

Let the planes assigned to each line be (rl, 1r2,..., lq). The point of intersection of a line L : r = a +km and a

plane _r : r.n = d is given by

d- a.n

p ------m + a. (9)
m.n

Similarly, the intersection of the plane and a line with a translation t, L : r = a + t + km, is given by

So the minimization problem

can be written as

d - a.n t.n
p(t) - m+a---m+t.

m.n m.n

l

t* = argmtin E IIPi - p',(t) H_
i=1

!

= m', + t (10)t* arg m_n E II ki t.ni
mii .ni

i--1



with

all ---- R'a/,2,

told = R*mi,2

ki di--ati.ni d4 - ai.nl-- m'i _- a'i mi -- ai
m_i Hi mi-Hi

where mi2 and ai2 are the gradient and intercept of the ith line in (M2, A2, f_m2, f_a,2) Equation (101 is a

quadratic minimization problem and t* can be found by the calculus of variation At the stationary point, we

have

l i e

_._(_"'I + 1 i 2 niniT 1 l T n.__.._ nl t iT- . x--_,ki.m _im i )t Lt ni.m,-----_ni - kil. (11)
(nim i) ni _n'i m ill i -- = i=1--

i:1

With this equation, t* can be found by a matrix inversion

C Determining the weights

Since the errors in m are unbiased and independent, we can show that at the true rotation 9_,

E(mi,1 - _mi,2) -- 0

E(II mi,1 -- _mi,2112) = trace(_m_,l) + trace(_m_,2)
1

Similarly, with the assumption that the errors incurred in the line fitting procedure are unbiased and independent,

at true transformation (3_, T) we have

E(pi-p'i(T)) = 0

Z_(llp_ - p'i('Y/Ill) = E(II Pi - '_" 112)+ E(IIP'i("Y/- P'd(T) II])

From (91, we have

E(I I p - E(p) H21
(a -- a/n mE(I i a - _. - 112)

n'l.'n

= E(II _.- a"-_n m 112)
m.n

= E(II(I - mnT)i I1_
m.n

_-- E(_T(I -- ranT)( I _ --)_)nlnT
m n m n

= E(7_ToT_) where 0 = (I- mn---_T)(I- nm----_T)
m.n In.n

= _(e),_Cr.,,l,s
iS

Using a similar procedure, we obtain

E(II p'i(t*) - p'i(t*) H22) _-- _ (_T o_)ij(Eai,21ij

iS

_(R'TOR')ij(Eai,2)0 '

iS



Thus, combining these results, we have

__1 '_ Z(_))ij(_._ai.1)i j + Z(R.TOR.),j(Za,,2),j
wti ij ij.

D Derivation of the Registration Error Estimators

D.1 Uncertainty in Rotation

Without loss in generality, we assume that M2 is measured exactly and its detection errors are transfered to the

respective rods in M1. Based on this assumption, we have

---- _RM2 -4- A

where _ is the true rotation. Our aim is to find a formula for

E(RTR) = E{(R" - _)T(R* -- _)}. (12)

where R* = UV T. Since we have no access to _, we could treat _ as a small perturbation from R*. Following

the derivation of R*, let _ = UV T. It can be shown that U,V,I_,V axe the eigenvectors of A, B, A + E and

B + F respectively, where

A T T T T---- MIM 2 M2M I , B -- M2M I MIM 2 ,

E = AMTM2A T-MIM2TM2 AT- AMTM2M T

F = M2ATAM T- M2MTAM T-M2ATMIM T

We can say that 11 contains the perturbed eigenvectors of A with perturbation E, and V contains the perturbed

eigenvectors of B with perturbation F.

The first order eigenvector perturbation [22] of U and V axe

3 uTEuk _ uTFvk

i=l,i_k i:l,iCk

(13)

where the As axe the eigenvalues of A. Rewriting (12),

(R* - _)T(I:_* -- _) : 2I - vuT_ - _Tuv T

-_ 2I -- (V -_ b'V)(U + _U)TR * - R'T(u -_ _V)(V _- _V) T

: -o_r(_uTR * _ R*T(_uoev T _ v_uTp.. * -- 0-vuTp_ * _ R*Tu_'v T _ R*T_uv T

Thus

E((R" - _)T(R.= --_)) = -E(SVJUT)R * - I2t'TE(c_U_V T)

_VE(SUT)R * - E(b'V)UTI:t * _ I:_*TUE(cSV T) - F{,*TE(6U)V T

where E(o%rSuT), E(JU) and E(JV) can be found by substituting E(E) and E(F) into (13).



D.2 Uncertainty in Translation

From Equation (6) and (11) we have

' n,nT m,-T
E wt,(I+ (n,.m,)2 n,.m,
i=I

l

n,m_,)_ = _wt,(I n'mT)(I
n.mi i=1 ni "mi

which can be written as

i=1

ni •mi

where

Hence,

' n_n_ m,n T
= Ewt'(I +

i=1 (ni .mi) 2 ni .n_/

= wt, I -_ I minT)o_ ( )(
ni.mi ni.mi

n.n_

; i

E(_T_) = E[E((_ , - a'i)ToT)¢--T¢ -1 E(o,(8, - a',))]
i=I i=I

I

= EE[(_., - a,i)ToT¢-T_-'Oi(_i -- i_'i) ].

i=1

Since the errors are independent, we have

!

E(tTt) = E{E(oT_-T¢-lOi)pq(_,ai,1)pq 4- E(I_*ToT_--T¢-l_)iI_*)pq(_ai,2)Ixl}

i=1 pq pq

E Line Fitting

A line can be represented by the following equation

r=a+km

or

/ / /y = av + k m r
Z az 71tz

where (az,av,az)' is any point on the line and (mz,m_,mz)' is the direction of the line. Without any loss of

generality, we could set az = 0.0 and mz = 1.0 (although this is not true for lines that are parallel to the z-

direction, we assume that the through plane direction is properly oriented such that no line is parallel to the

z-plane). Thus the equation for a line is



()()X az + Z

y a_ m r

For a particular z, we estimate the (x, y) component of the line• By repeating the procedure for a series of

(Zl,..., zn), we obtain (Xl,..., xn) and (yl,...,yn). We could form the following equation for the x components

• . ax + . (14)

xn 1 Zn ez,n

where (ez,1, ..., ez,n)' are the estimation errors for the (zl,..., xn)'. Based on the assumption that the estimation

errors for each z are independent and have the same variance (which is true in most cases), (az,mz) in (14) could

be estimated by any standard linear regression technique [23]. Using the following notation:

X (1z1): ,Z---- : : ,

xn 1 zn

the estimated values for (az, m_) are

_'_z ) : (zTz)-IZTx

and

2 = var(Sz) 2 T -1_,, =_,{(z z) )11 (15)

_,,_ = ,ar(_x) = __{(zTz)-I}= (18)

where a-2 = var(ei) and {(zTz)-I}Ij refers to the (i,j) element of the matrix (zTz) -1. We perform the same

procedure for the y component of the line.

F Estimation of a 2

In cases where vat(e) is unknown, we could use the following method to obtain an estimated a 2 [23]. . Since a 2

is the expected squared value of an error, ei, it is natural to use the simple squared value of the residuals. The

vector of residual for the x component is

= X -- z(zTz)--IZTx

2 isUnder the assumption that the errors axe uncorrelated with constant variance a2, an unbiased estimate of a z

^2 IIx-_ II5
O" z

n-p

where p is the number of parameter (which is 2 in this case) and n is the data size. a_ is estimated in a similar

manner.
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Registration of Serial Skeletal Images for Accurately Measuring

Changes in Bone Density

Chye Hwang Yan, G.S. Beaupre *, R.T. Whalen**, S. Napel ***

Department of Electrical Engineering, Stanford University, CA 94305, USA

Relevance to Musculoskeletal Condition: The non-invasive determination of changes in bone mass is

valuable as a clinical assessment tool in a variety of settings. Examples include: evaluating the efficacy of drug

therapy in the treatment of osteoporosis; understanding local bone adaptation in response to exercise intervention;

and assessingthe progressionof bone losswith skeletaldisease.

Introduction: The accuratemeasurement ofbone apparent densityfrom Computed Tomography (CT) requires

a considerationof image noise,marrow presence and beam hardening. Non-invasivemeasurement of changes in

bone apparent density (grams/cm3) furthernecessitatesimaging the same skeletalsiteat differenttimes and

registering the serial images. Mis-registration can introduce errors, particularly when density gradients are high.

The effect of mis-registration errors generally increases as the size of the volume of interest (VOI) decreases. For

thisreason and because of image noiserelativelylargeVOI's (3000-4000 mm3) are typicallyanalyzed [1,2].

We have developed a semi-automated, 3D, surface-basedregistrationtechnique that does not requirethe use ofan

external frame or fiducial markers. The accuracy of our non-invasive registration technique is comparable to that

which can be obtained using standard invasive approaches (e.g., skeletal pins and frames). The objective of this

study was to assess the accuracy and precision of repeated re_stration of the human calcaneus whe n imaged
with a clinical CT scanner.

Methods: Excised human ealcanei were secured within a custom-made fiducial frame, referred to as a "tiger

cage" (Fig. 1). The tiger cage[calcaneus was scanned in different orientations using a GE HiSpeed Advantage
CT scanner. Scanning technique consisted of: helical mode; 120 kVp; 240 mA; 1.0 mm slice thickness; pitch =

1.7, scan field of view -- 250 ram; display field of view -- 120P130 rnm; standard reconstruction algorithm. Using
a 512 x 512 reconstruction matrix, the in-plane pixel size was approximately 0.25 ram. Reconstructions were

done every 0.5 mm in the through-plane direction. To examine the effects of image noise and contrast, the tiger

cage/calcaneus was scanned both in air and in water contained within a 240 mm diameter, thin-walled (12.7 ram)

plexigiass cylinder.

We have recently developed an improved gold standard [3l that we used to assess the accuracy of our new surface-

based registration of the caleaneus. We determined registration accuracy by: 1) obtaining a gold standard

transformation for the tiger cage between pairs of scans; 2) obtaining a transformation for the calcaneus using

surface points only (200,000 to 300,000 points per calcaneus); 3) transforming all calcaneus voxels using both

the gold standard and the calcaneus transformations; 4) calculating the distance (error) between corresponding

voxels in the two transformed calcaneus images.

Results: Shown in Table 1 are the registration errors for the calcaneus scanned in air and scanned in water.

Note that the average errorsin airand water are similarand sub-pixelin magnitude.

Discussion: We have developed a highly accurate frameless registrationtechnique for use in determining

changes in bone density. The average errorthroughout the volume is sub-pixelin magnitude. It should be

noted,however, that our registrationerrorsare spatiallycorrelated;highestaccuracy existsnear the centruln of

the calcaneus. To our knowledge thisnew technique permits accurate registrationof bone volumes an order of

magnitude smallerthan previouslypossibleusing clinicalCT scanners. The technique isrobust in the presence



Figure 1: Calcaneus within tiger cage.

Minimum Error Average Error Maximum Error

Table 1: Registration Error (mm)

Calcaneus in air 0.002 0.180 0.360

(4 Registrations ) (4-0.005) ( 4-0.017) (4-0.029)
Calcaneus in water 0.040 0.200 0.400

(4 Registrations) (4-0.020) (±0.060) (:1:0.110)



of noise with minimal degradation of registration accuracy when scanning with a water bolus. Furthermore, by

using surface points only, the accuracy of registration is independent of changes in bone apparent density.

Highly accurate and precise registration is an essential component for non-invasive monitoring of changes in local
volumetric bone density. Using this newly developed registration technique it will be possible, for example, to

monitor more accurately osteoporosis progression and treatment in both large and small regions using a clinical

CT scanner. In particular, the ability to measure bone changes in small regions allows one to examine relationships

between remodeling rates and local bone morphological parameters such as apparent density and related variables

such as bone spedfic surface area.

References: [1] Klotz et al. Trans. Med. Imaging, 371P376, 19891 [2] Tanno et al. Bone, 239P247, 1996; [3]

Yan et al., accepted 1996 Radiological Soc. N. Amer.
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Precise and Accurate Gold Standard for Multimodality and Serial

Registration Method Evaluations

Chye Hwang Yan, G.S. Beaupre, R.T. Whalen, T.S. Sumanaweera, S. Napel

Department of Electrical Engineering, Stanford University, CA 94305, USA

Purpose: The accuracy of a registration method is usually determined by using the registration of an attached

stereotactic frame as the gold standard. Existing frame registration techniques are: (1) matching each 2D slice

separately to an N-bar model (2) using 2 detected N-bars (6 per frame) as the coordinate system. These techniques

assume a precise frame model and only utilize partial 3D information. We propose a technique that assumes only

linear structures (rods) in the frame and utilizes all 3D information.

Materials and Methods: Our technique fits lines to all linear structures in each data set and registers them

using a closed form solution. We obtained CT scans (0.24x0.24xl.00mm 3 voxels) of a frame at 8 orientations. We

performed 28 registrations between scans using existing and proposed techniques. We defined registration error
as the maximum deviation between registered corresponding rods.

Results: Registration errors (average, maximum) for the existing 2D and 3D techniques were (0.18ram, 0.22mm)

and (0.08ram, 0.11mm) respectively. The proposed method reduced the error to (0.035mm, 0.04ram).

Conclusion: The proposed technique produces more accurate registration without requiring any knowledge of

the frame geometry. It is used to evaluate our new surface registration technique, for high-resolution QCT, which

has an accuracy comparable to existing gold standards.

Take Home Points: (1) accurate registration with simple frame. (2) global minimum registration.
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